
m-

NASA Technical Memorandum 109176

An Optimized Implementation of a Fault-
Tolerant Clock Synchronization Circuit

Wilfredo Torres-Pomales

Langley Research Center, Hampton, Virginia

(NASA-TM-I09176) AN OPTIMIZED

IMPLEMENTATION OF A FAULT-TOLERANT

CLOCK SYNCHRONIZATION CIRCUIT

(NASA. Langley Research Center)

24 p

G3/62

N95-24382

Unclas

0045344

February 1995

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

Abstract

A fault-tolerant clock synchronization circuit was designed and tested. A
comparison to a previous design and the procedure followed to achieve
the current optimization are included. The report also includes a
description of the system and the results of tests performed to study the
synchronization and fault-tolerance characteristics of the implementation.

Contents

Page

1. Introduction 1

2. System Description 1

2.1 Comparison to previous design 4

2.2 Optimized Implementation of the Convergence Function 4

2.3 Implementation Description 7

3. Implementation Evaluation 14

4. Concluding Remarks 19

5. References 19

Appendix: Ideas that could help improve the clock circuit design 20

iii
,,'-_ _ FILMED

1. Introduction

Present reliability requirements of critical systems necessitate failure
rates less than those of available digital devices. Fault-tolerant architectures
are used to achieve the reliability requirements through redundancy. These

fault-tolerant systems are designed to maintain correct operation in the presence
of a bounded number of faults. In a synchronous redundant computing system,
the computers are assumed to be synchronized through some mechanism
implemented in hardware or software. Clock synchronization provides
coordinated action among redundant processing elements, and that means
maintenance of synchronization in the presence of faults is crucial. This report
presents an optimized hardware implementation of a fault-tolerant clock

synchronization algorithm.
The system presented here is an optimization to the implementation

described in [1], which was a realization of the system proposed by Paul S.
Miner in [2]. The goal was to design a system that performed the same functions
as the original, but it had to use fewer logic gates and be capable of operating at
clock frequencies in excess of 33 MHz, given the appropriate hardware. This
paper explains how this goal was achieved. In [3], Miner and Johnson present a
formal analysis of the optimized implementation of the synchronization algorithm.
The following sections describe the new system in detail and the results of some
tests are presented. Also, the appendix lists some ideas that could be used to
further improve the clock synchronization system.

2. System Description

The clock synchronization system has four nodes and uses a fully
connected point-to-point communications network. It is capable of tolerating a
maximum of one transient or permanent fault. Each node in the system has its
view of what the correct time is. This is called the Local Time of the node. The

synchronization algorithm requires the nodes to operate in frames or cycles, and
to exchange their Local Times once during each frame. With the information
received, the nodes compute and apply adjustments to their Local Times to
maintain the system synchronized within a maximum allowed skew (D). In this
implementation, the Local Time of each node has two components: the Frame
Number (i), and the Local Clock (LC). The Frame Number counts the number
of frames since the system first achieved synchronization. The Local Clock is
the time elapsed in each frame. If the nominal frame length is R, the Local Time
is given by (i R) + LC.

The nodes in this implementation do not transmit both their Local Clock
and Frame Number values. Instead, each node sends its Frame Number to the

other nodes some time before its Local Clock reaches time LC = Q (the time to

transmit, Q = R/2). This transmission provides sufficient information about the
Local Time of the node since the Frame Number is included and the time of

arrival of the transmission can be used by a receiving node to determine the
skew or deviation of the Local Clock of the transmitting node.

The nodes use voters to maintain agreement on the value of the Frame
Number. Each node uses the received Frame Numbers together with its own
Frame Number to perform a vote, and the result is the value used in the next
frame.

The function used to synchronize the Local Clocks is the fault-tolerant
midpoint function [4]. This function is applied independently by each node. A
particular node needs the deviations of all the nodes in the system with respect
to its Local Clock. The deviations of the other three nodes are computed based
on the time of arrival of their transmissions with respect to the expected arrival
time. A fourth deviation, the deviation of the node with respect to itself, is also
required by the algorithm. To get this deviation a node assumes there is a fourth
transmission received in perfect synchronization (i.e., this deviation is always
zero). Computation of the Local Time adjustment using the midpoint function
consists of taking the average of the deviations of the second and third received
transmissions. A node applies its computed adjustment by making the frame
shorter or longer than the nominal R by an amount equal to the adjustment.

Proper behavior must be defined for when a node does not have enough
information to compute an adjustment. The fault-tolerant midpoint function
requires the deviations of at least three nodes. Considering the results in [1], it
was decided to use the Assumed-End-of-Frame strategy to handle a condition of
insufficient information to compute the adjustment. This strategy consists of
assuming that the missing information arrived at the end of the frame, and then
computing an adjustment.

The nodes can operate in one of three possible states: Initialization,
Recovery, or Maintenance. Each node evaluates its operational state at the end
of each frame. Figure 1 shows the rules that a node uses to determine its state.
A node goes to Initialization after power-up or after detecting there are fewer
than three nodes synchronized within the maximum allowed skew D. In this
state the Frame Number is set to zero and the node raises a flag signaling its
Local Time is not synchronized. If it is detected that there are at least three
nodes synchronized, but the computed adjustment is greater than D, the node
will switch to Recovery because its Local Time is not synchronized with the
others. In this state the Frame Number is not incremented and its value is
recovered by a vote on the received Frame Numbers. If there are at least three
nodes synchronized and the computed adjustment is smaller than D, a node
goes to the Maintenance state. This is the normal operational state of the
system. In this state a node increases its Frame Number by 1 at the end of each
frame and clears its out-of-sync flag.

The following sections describe the design of the new system in more
detail.

2

FIGURE 1" OPERATIONAL STATES OF THE NODES

INITIALIZATION

- Frame Number = 0

- signal: out-of-sync

NO

MAINTENANCE

- Frame Number
incremented by 1

- signal: local time
is synchronized

RECOVERY

- Frame Number not
incremented

- Frame Number

recovered by voting
- signal: out-of-sync

es within \'_.
um allowedJ

ES

YES

]No

2.1. Comparison to previous design

Figure 2 is a block diagram of the first implementation. The goal there
was to design a circuit that implemented the algorithm using a 10 MHz clock,
used Programmable Logic Devices (PLDs), had variable parameter settings, and
included external controls for experiments. Using theoretical analysis, it was
decided to use a nominal frame length R of 8192 (-- 2000 hex) clock ticks, a

transmission time Q of R/2 = 4196 (= 1000 hex) ticks, and a maximum allowed

skew D of 11 (= B hex) ticks. These could be varied during experiments to

compare the performance for various parameter combinations. To
accommodate these requirements it was decided to use a 16-bit data path. This

complicated the circuit because it used many comparators, multiplexers, adders,
and subtracters. As built, the circuit used a lot of board space and consumed a

large amount of power.
In figure 2 again, the Timing Logic and Adjustment Computation blocks

used most of the hardware in the first implementation. These blocks controlled

the sequence of events in the circuits and the computed adjustments,
respectively. The Timing Logic block used many 16-bit comparators. The
Adjustment Computation block used the informal block model present in [2]. This
needed a 16-bit adder, a subtracter, a multiplexer, and two 16-bit registers. It

was important for the new implementation to reduce the logic used by the Timing
Logic and Adjustment Computation blocks.

The goal of the new implementation was to design a circuit that performed
the same functions as the first one, but it had to use less logic, have fixed

parameters setting, and operate with a 33 MHz clock, given the appropriate
hardware. In figure 2, all the blocks were modified except for the Receivers,
Majority Voter, Frame Counter, and Transmitters. The circuit was simplified by
taking advantage of the fixed parameters setting. The parameters were fixed at
the same values as in the original circuit. A 14-bit data path was used. The
comparators needed for the Timing Logic were replaced by 14-bit AND gates.
However, using a similar approach with the Adjustment Computation block would
have resulted in a circuit more complex than desired. Simplification of this block

was achieved by reanalyzing the convergence function. The next section
explains the procedure followed.

2.2. Optimized Implementation of the Convergence Function

The purpose of the Adjustment Computation block is to compute the
correction to the Local Clock using the convergence function. As mentioned
above, the function used here is the fault-tolerant midpoint function. The

computed adjustment is applied by making the frame shorter or longer than the
nominal frame length R by an amount equal to the adjustment. To explain this
more specifically, let us define some variables:

4

L_J
C_)

LL
D<-
L_J
b--
Z

E_
0
iS)
Or]
12A
0
0

5

LC2= value of the Local Clock LC when the second transmission is

received

LC3= value of the Local Clock LC when the third transmission is received

Q= value of LC when a received signal is in perfect synchronization with

the Local Clock; also equal to the time for transmission
R-- nominal frame length (i.e., in perfect synchronization, a frame ends
when LC=R)

The computed adjustment adj is equal to the average of the deviations of the

second and third received transmissions. So:

adj ._

(LC2- Q) + (LC3- Q)

2

Then, the condition to end a frame is:

LC -- R + adj

To get to the formula used in the new implementation, note that for the
parameters specified:

R=2Q

Substituting in the condition to end the frame:

LC -- R + adj = 2Q +
(LC2- Q)+ (LC3- Q)

2

_- (LC2 + LC3)LC -- 2Q + (LC2 + LC3) - 2Q 2Q + Q
2 2

(LCz + LC0
LC = +Q

2

The first term in this summation can be rearranged:

LC = [LC2 + (LC3- LC2).] + Q
2

This is the formula implemented in the new optimized version of the clock

synchronization circuit. It is implemented in the following manner:
1. When the second transmission is received, the value of LC=LC 2 is

loaded into a counter

6

2. After loading, the counter starts counting at one-half the frequency of

the system clock until the third transmission is received
3. The output of the counter is then added to Q. This gives the value of
LC to end the frame.

Figure 3 shows a diagram of the implementation of this formula. As can be seen,
it only requires a 14-bit counter, an adder, and a comparator. Note that for
Q=lOOO hex, the adder only operates on the two most significant bits of the

output of the counter. Specifically, let A[14..1] be the output of the counter.
Then the output of the adder £[14..1] is:

E[12..1] = A[12..1]

F_,[13] = A[13]
F_.,[14]= A[13] XOR A[14]

This result simplifies the implementation even further. The comparator uses the
standard XNOR-AND combination for 14-bits. The next section presents the full

implementation at the component level.

2.3. Implementation Description

The optimized implementation had to perform the same functions as the

original. Figure 2, without the DAS Decoder block, also applies to the new
implementation. Figure 4 shows the logic used in the Local Clock, Monotonic
Clock, Timing Logic, and part of the State Determination blocks. The Local
Clock (at the top of the figure) is the 14-bit counter driven by the clock oscillator

(CLK signal). It has enable (COUNT), reset, and restart (LOAD) inputs.
The logic to compute and signal the end of the frame is in the top right

side of figure 4. The A counter is driven by the clock oscillator. The counter is
loaded with the value of the Local Clock LC 2 when the second transmission is

received. After this, the counter starts incrementing until the third transmission
is received. Arrival of the second and third transmissions is signaled by D_C2
and D_C3, respectively. The A counter has a carry-in input (Cin) used to control
the count to one-half the frequency of the clock oscillator. The value Q (=1000

hex) is added to the output of the counter, and the result is passed to a two-

stage synchronous LC comparator. The two stages of this comparator are the
XNOR and AND stages, which are separated by D-type flip-flops. Note that the A
counter resets to value 2FFF hex to avoid an early-end-of-frame error (i.e., the
output of the adder will be equal to 1000 hex if the counter resets to 0000 hex).
The output of the comparator passes through a D flip-flop and becomes the
LOAD signal used to end the frame. Note also that because of the delay
introduced by the A counter, the comparator and the D flip-flop of LOAD, the
nominal frame length becomes R+4 = 2004 hex ticks. The NO_Rx signal is

7

Z

2Z

ZO
WZ

wll-
Jw
o- 0
_z

W
rTCg
w_
_Nw

--Z

n
0 o
,o m

COT
WI'--

rru_
DO
(D
U._

Ic_\ I /
LJ LLJ

Z

Q_
O

Q_

(_D q_)

-_ O
O F-

OO

Q_ J O

,,, I°g_

+ QD

QD

c-q

h_f
_J
C_

iir --- q

(D

z
tlJ

8

0 o
0

O0
O- j

0

0 t
zu.
O0

I

O0
O0
-Jz

._1 -
<0

O0
.-J/

wZ

D-

L_F-

U..

i

i

s__
o

tt

_l

_ r

C-d I
X I

Q I

02 !

9

used to disable the Receivers during the last two ticks of the frame to allow time

to process the received information and to clear the logic for the next frame.
The other two signals in the bottom right part of figure 4 control the timing

of the transmissions of the node. The SEND signal enables the Transmitters to

broadcast the Frame Number. The S4 signal controls the timing of the assumed
transmission in perfect synchronization (see the beginning of section 2).

The Monotonic Clock logic is at the top left side of figure 4. This logic
passes the value of the Local Clock until it reaches 2003 hex. If LC is larger
than this, the output will be kept constant at 2003 hex.

The bottom left section of figure 4 shows part of the State Determination

Logic. The OUT_OF_SYNC signal goes low if the node is in the Maintenance
state (see figure 1). A node stays in this state if there are at least three
synchronized nodes (i.e., there is a clique) and if the computed adjustment is
smaller than the maximum allowed skew D. The CLIQUE_X signal indicates

whether or not there is a clique. Also, there is logic to implement two "flags".
One flag goes high when LC=IFF7 hex and the other when LC=200E hex. If
the LOAD signal comes in the time between the first flag and the second flag,
then the computed adjustment is smaller than the maximum skew D.

The logic in figure 5 complements the Out_Of_Sync logic presented in

figure 4. It is the Clique Detection logic. Counters C13 and C24 are used to
count the number of clock ticks between the first and third and between the
second and fourth received transmissions, respectively. Their outputs go to

comparators (implemented with AND gates) to determine if they are larger than
the maximum allowed skew D. The block labeled LOGIC implements the

CLIQUE_X function, which uses the results of the comparisons and the number
of received transmissions to determine whether or not there is a synchronized

group of nodes. The logic function implemented by CLIQUE_X is shown in

figure 5.
Figure 6 shows the Signal Identification and Receivers blocks. The

Receivers are a direct link to the other nodes in the system. Their outputs
include the Frame Number (which are sent to the Majority Voter) and control

signals to indicate the arrival of valid data. These control signals are latched
(Sld, S2d, and S3d) and sent to a synchronizer. This section is needed
because the receivers are synchronized to the clock of the node from which the
information was sent. After the synchronizer, there are logic functions to identify
the first (C1), second (C2), third (C3), and fourth (C4) received transmissions.
Note that signal $4 is used in this logic. Also, the Gate section uses the bit
LC14 to generate D_C2 and D_C3 from the logic of C2 and C3. This is a simple
way to implement the Assumed-End-of-Frame strategy mentioned at the
beginning of section 2. If the second or third transmissions are not received,
LC14 forces D_C2 and D_C3 high near the end of the frame so an adjustment
can be computed. D_C2 and D_C3 are used by the A counter in figure 4.

Figure 7 shows the reset circuit. There are three conditions that generate
a reset: power-up, manual reset, and "return to Initialization". The 74122 chip is
a One-Shot circuit that is used to reset after power-up and after a manual reset.

10

FIGURE 5" CLIQUE DETECTION

_RFSET

C 1.3= 1100

C 13 > D C24 > O

ENABLE_C24 = C IC2(!Ca)

CLK

C24 = 1t00

LOAD

C4

IOAD

CL IQUE_X = C3(!C15_0)(!C24_D) + C3C4(!C13_D + %24 9)

_RESET

[:L IQUE

11

0

@

>

L_
m

i |

CO

W
fir
D

ii

m

OZ
W

W
C)
W

o -w_

L_ _
W

z
O
CE
32_

z <
>._ o

....[i

io___

('7._
_'__-1_

0

0 0 C3

'---7 D _ D

.>_ -°1

Of)
r-'-)
cr_

or)

c,,J

"+ or')

-4-

CP> c_ c/_

-_- ._ C_I
c.r_

L,O C,7 (./7_

t,,7 (3")

,- _ _,,

II H I_ H
CD
0 _ _ _ '_-
__ CD CD CP 0

C_
I

I

w

0

c_

x

'1
12

!-
m

D
0
ft.
m

0 r....

W L-__

W

CC
i |

N

III

rr

LL

k--
I,I

LJ

X
(_)

X
C

X om

I_ I.--
LLI Z
Oq D

0
0

0

C)

LJ

L_
D-"

.._J

Z

c_
c_

p_

()

--V-

W

W
E_

___i _

I

13

The circuit at the bottom of the figure controls the "return to Initialization" reset.
The D flip-flop is used to latch a high value when the OUT_OF_SYNC signal

goes low (i.e., when the node is synchronized). If later the Clique Detection
logic signals that the system has lost synchronization, the reset goes high and a
counter is started. After three ticks the reset is cleared, the COUNT signal is
enabled, and the node continues operation in the Initialization state.

The logic of the Frame Counter and the Majority Voter will not be
presented because they are identical to the ones used in the first
implementation. The functions performed by these blocks is explained at the

beginning of section 2.

3. Implementation Evaluation

The new design was tested by implementing it on PLDs and using a 10
MHz clock frequency. This frequency was selected so the new design could be
tested using three nodes from the first implementation to complete the system.
The setting of the nodes that used the first design was tuned so they matched
those in the new implementation. Three cases were investigated: initialization,

recovery from a single transient, and recovery from a massive transient. Also,
the tightness of synchronization was measured.

Figure 8 shows a sample plot of the response of the system during
initialization after power-up. The Local Clocks of the nodes start at random
values. After an initial delay, the nodes reset their circuits and start operating.
Synchronization was achieved after 58,000 clock ticks (= 5.8 milliseconds) from
power-up. The time to achieve initial synchronization was close to this value
during all of the observations. Figure 9 shows the Local Time for the same run
in figure 8. Note how the Local Time was kept under 9,000 until the nodes
synchronized, after which the Frame Number began to increment. This was the
expected behavior and, as can be seen, the new optimized implementation
behaves identically to the previous one.

Figure 10 shows a sample response of the system during a single
transient fault on the optimized clock circuit. Because the new design does not
include external controls, the transient fault was simulated by forcing a reset at
Reference Time 20,000 clock ticks. The figure shows how the optimized node
recovered synchronization by extending its frame. This behavior is typical, and
the time to recover synchronization depends on the value of the Local Clock at
the time the reset occurs.

Figure 11 shows a sample plot of the response of the system to a massive
transient fault. Here again the fault was a reset forced at a random time during

the operation of the system. In this sample case, the fault occurred in nodes 1,3,
and the optimized implementation. This massive fault caused the nodes to move
to the Initialization state until resynchronization. Note that the system recovered
within 20,000 clock ticks (= 2.0 ms) after the transient.

14

_L

:D
=_,,

..I
o
¢D
--I

3
o

4

3018

6032

9046

12060

15074

18088

21102

24116

27130

30144

33158

36172

39186

42200

45214

48228

51242

54256

57270

60284

63298

66312

69326

72340

75354

78368

81382

84396

67410

Q

Local Clocks

-.-.= I_3 co .b= f,.n cr) -,,j oo (,c)
o o o o o o o o o
o o o o o o o c) o
o o o o o o o o o

i--_. i -_,-.L i i I i -_..

_ ,_-,-.. |__._-......-= - _,,=-.-...-.--,

_ _ l
i

" "--,,i J. .,,,,,.:. _'°'-= ,_

I

...-:-- .- " " "-,--:-.-':-_ _ " " ---,I

_- _ .7._- .'-:_-'.---_'..=. ---. - --'.-: ._:"- ---1

;,,:-'v'-°-_°.t.. _ "'_ t=..*_.. '

_ -'::-'":_-'-'-_--_ _ _ ".._-_'-__-i

• :: : ." " " " _.-_.Z_..'--Z".._..............................
°. °. -,o..... _

Bin.

I

I
I

o

i

0

i

t
6

6
o

I

I
D

O
o

I

I
O

§-

e_

o

'TI
m

C:

m
oo
ill

I-
0

]>
I"

r"
0
C_

O_

C:

Z

i

Z
.-I

_>
I"-
N
_>
.-I
u

0
Z

9_

_g

!
o
o
--4

3
o

5

3019

6033

9047

12061

15075

18089

21103

24117

27131

30145

33159

36173

39187

42201

45215

48229

51243

54257

57271

60285

63299

66313

69327

72341

75355

78369

81383

84397

87411

- ___.-Lz _-:'_
2_. "_:'"

k • •

|: :._._:. ,,.....
r'-_ _, "-
"'_/ ", "","1
/ "_- Xl
'_--,.=__. _,__,

Local Times

o o o
8 8 8 8

t I t 1 I

I
I
I

8

0

I

I

C_

8

I
i

I
0

R
3

e,l

0
o

'TI
m

C:

m
cO
illl

r-
0
C)
;1>
r-

--4
Bim

m
t.n

c

z
G')

z
ImBm

--I
i

_>
r-

N

"--I

Z

#,_1-

8_

The tightness of synchronization was measured using an oscilloscope.
The system was able to maintain synchronization within 30Q nanoseconds or 3
clock ticks. This is an excellent performance considering that the
implementation of the convergence function is completely different in the new
optimized design. This result also gives added confidence on the equivalency
of the two implementations.

4. Concluding Remarks

A new design of a clock synchronization system has been presented.

The goal of designing a new circuit that uses fewer logic gates and performs the
same functions as the initial design has been accomplished. It has been shown

that the circuit behaves correctly during all the possible operating states when
tested using three nodes from the initial design. It remains to be demonstrated
whether the design can be directly implemented on a 33 MHz circuit. However,
it seems reasonable to expect that this will not pose a problem given the
simplicity of the design.

5. References

[1] Wilfredo Torres-Pomales: "A Hardware Implementation of a Provably
Correct Design of a Fault-Tolerant Clock Synchronization Circuit", NASA

TM 109001; Langley Research Center, Hampton, VA; July 1993.

[2] Paul S. Miner: "Verification of Fault-Tolerant Clock Synchronization
Systems", NASA TP 3349; Langley Research Center, Hampton, VA;
November 1993.

[3] Paul S. Miner and Steven D. Johnson: "Formal Analysis of an
Optimized Fault-Tolerant Clock Synchronization Circuit", submitted to the
1995 International Conference of Computer Design, Austin, TX; October
1995.

[4] J. Lundelius Welch and N. Lynch: "A New Fault-Tolerant Algorithm for

Clock Synchronization", Information and Computation, 77(1):1-36, April
1988.

19

Appendix: Ideas that could help improve the clock circuit design

1. The Local Clock and the Frame Counter use independent sections of

the design. This could be exploited in a high speed design using fast
logic for the circuit directly connected to the Local Clock, and slower logic
for the circuit connected to the Frame Counter.

2. The Majority Voter could be simplified by using a sequential machine
instead of combinational logic. This could result in a reduction in the
amount of hardware needed.

3. The SEND signal could be derived from one of the bits of the Local
Clock similarly to the way the LC14 bit is used for the D_C2 and D_C3

signals. Also: Is $4 really needed?
4. Eliminate the NQRx signal. In this design, NQRx is only needed by
the Majority Voter because it uses combinational logic.
5. Use a shorter frame length during Initialization. A shorter frame length
will force the nodes to compute adjustments more frequently. This could
result in a shorter time to achieve initial synchronization and to recover
from a massive transient.

6. Consider reducing the number of transmitters in each node. The
current implementations use three transmitters on each node to
accomplish the point-to-point communications. However, the same result
can be accomplished by using one transmitter with a one-to-three splitter
to distribute the signal to the other nodes.

2O

Form Approved

REPOrlT DOCUMENTATION PAGE OMBNO. 0704-0188

Public repo_ng burden for this cotiection "_iinformation is estimated to average 1 hour per response, including the time for re,hewing instruc_ons, searching existing data sources,
gethenng and maintainang the data neeoF _, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
cotiectc.n of information, Including sugge,.:_lonsfor reducing this burden, to Washington Headquarters Sentces, D_rectorale for Information Operation,s end Reports. 1215 Jefferson Davis
Highway. Suite 1204, Arlington, VA 222_-'2A,302, and to the Office of Management end Budget, Paperwork Reduct0on Project (0704-O188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1995 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Optimized Implementation of a Fault-Tolerant Clock Synchronization WU 505-64-10-13
Circuit

6. AUTHOR(S)

Wilfredo Torres-Pomales

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING1MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-_)001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-109176

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximurn2OOwords)

A fault-tolerant clock synchronization circuit was designed and tested. A comparison to a previous design and

the procedure followed to achieve the current optimization are included. The report also includes a description
of the system and the results of tests performed to study the synchronization and fault-tolerance characteristics

of the implementation.

14. SUBJECTTERMS

Fault Tolerance, Clock Synchronization, Convergence Function, Implementation

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18, SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

24

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prascdbed by ANSI Std Z39-18
298-102

